3D printing of cellulose nanocrystals based composites to build robust biomimetic scaffolds for bone tissue engineering


  • Noyes, F. R. Noyes’ Knee Disorders: Surgery, Rehabilitation, Clinical Outcomes E-Book (Elsevier Health Sciences, 2016).

    Google Scholar 

  • Kanwar, S. & Vijayavenkataraman, S. Bioprinting design of 3D printed scaffolds for bone tissue engineering: A review. Bioprinting 24, e00167 (2021).

    Article 

    Google Scholar 

  • Krzysztof, P. & Pokrowiecki, R. Porous titanium implants: A review. Adv. Mater. Eng. 20, 1700648 (2018).

    Article 

    Google Scholar 

  • Aro, H. T. & Aho, A. J. Clinical use of bone allografts. Ann. Med. 25, 403–412 (1993).

    Article 
    CAS 

    Google Scholar 

  • Iqbal, N. et al. A critical review of recent biodegradable polymers used in tissue engineering. Int. Mater. Rev. 64, 91–126 (2019).

    Article 
    CAS 

    Google Scholar 

  • Bose, S., Roy, M. & Bandyopadhyay, A. Recent developments in bone tissue engineering and scaffolds. Trends in Biotechnol 30, 546–554 (2012).

    Article 
    CAS 

    Google Scholar 

  • Porter, J. R., Ruckh, T. T. & Popat, K. C. Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnol. Prog. 25, 1539–1560 (2009).

    CAS 

    Google Scholar 

  • Obrien F. J. Biomaterials, scaffolds for tissue Engineering. Mater. Today 14, 88–95 (2011).

    Article 
    CAS 

    Google Scholar 

  • Ma, P. X. Scaffolds used for tissue fabrication Mater. Today 7, 30–40 (2004).

    Article 
    CAS 

    Google Scholar 

  • Cheung, H.-Y., Lau, K.-T., Lu, T.-P. & Hui, D. A critical review on polymer-based bio-engineered materials for scaffold development. Compos. Part B Eng. 38, 291–300 (2007).

    Article 

    Google Scholar 

  • Jonoobi, M., Harun, J., Mathew, A. P. & Oksman, K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos. Sci. Technol. 70, 1742–1747 (2010).

    Article 
    CAS 

    Google Scholar 

  • Patel, D. K., Deb, S., Hexiu, J., Ganguly, K. & Lim, K. Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/ cellulose nanocrystals for bone tissue engineering. Int. J. Biol. Macromol. 162, 1429–1441 (2020).

    Article 
    CAS 

    Google Scholar 

  • Elena, M. et al. Three-dimensional printed polycaprolactone-microcrystalline cellulose scaffolds. J. Biomed. Mater. Res. Part B 107B, 521–528 (2019).

    Google Scholar 

  • Cakmak, A. M. et al. 3D printed polycaprolactone/gelatin/bacterial cellulose/hydroxyapatite composite scaffold for bone tissue engineering. Polymers (Basel). 12, 1962 (2020).

    Article 
    CAS 

    Google Scholar 

  • Meftahi, A. et al. For skincare, cosmetics and healthcare, nanocelluloses can be used as biocompatible skin materials: Regulations and formulations. Carbohydr. Polym. 278, 118956 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bhattarai, N., Li, Z., Edmondson, D. & Zhang, M. Alginate-based nanofibrous scaffolds: Structural, mechanical, and biological properties. Adv. Mater. 18, 1463–1467 (2006).

    Article 
    CAS 

    Google Scholar 

  • Feng, B., Tu, H., Yuan, H., Peng, H. & Zhang, Y. Acetic-acid-mediated miscibility toward electrospinning homogeneous composite nanofibers of GT/PCL. Biomacromol 13, 3917–3925 (2012).

    Article 
    CAS 

    Google Scholar 

  • Bhattarai, N. et al. For biomedical applications, natural-synthetic synthetic polyblend nanofibers are available. Adv. Mater. 21, 2792–2797 (2009).

    Article 
    CAS 

    Google Scholar 

  • Pon-on, W., Suntornsaratoon, P. & Charoenphandhu, N. Synthesis and investigations of mineral ions-loaded apatite from fish scale and PLA/chitosan composite for bone scaffolds. Mater. Lett. 221, 143–146 (2018).

    Article 
    CAS 

    Google Scholar 

  • Edwards, A., Jarvis, D., Hopkins, T., Pixley, S. & Bhattarai, N. Poly(ε-caprolactone)/keratin-based composite nanofibers for biomedical applications. J. Biomed. Mater. Res. Appl. Biomater. 103, 21–30 (2015).

    Article 

    Google Scholar 

  • Belaid, H. et al. Boron nitride based nanobiocomposites : design by 3D printing for bone tissue engineering. Acs Appl. Bio Mater. 3, 1865–1875 (2020).

    Article 
    CAS 

    Google Scholar 

  • Soundarya, S. P., Menon, A. H., Chandran, S. V. & Selvamurugan, N. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int. J. Biol. Macromol. 119, 1228–1239 (2018).

    Article 

    Google Scholar 

  • Guo, L. et al. The role natural polymers play in bone tissue engineering. J. Control. Control 338, 571–582 (2021).

    Article 
    CAS 

    Google Scholar 

  • Martínez-moreno, D., Jim, G. & Marchal, J. A. Pore geometry is a factor in the growth and adhesion of infrapatellar stem cells in biofabricated thermoplastic scaffolds that are useful for cartilage tissue engineering. Mater. Sci. Eng. Eng. 122, 111933 (2021).

    Article 

    Google Scholar 

  • Bobbert, F. S. L. & Zadpoor, A. A. A. Mater. Chem. Chem. 5, 6157–6414 (2017).

    Article 

    Google Scholar 

  • Mirkhalaf, M. et al. 3D printed scaffolds can be used to define architectural effects. Appl. Mater. Today 25, 101168 (2021).

    Article 

    Google Scholar 

  • Shirzad, M., Zolfagharian, A., Matbouei, A. & Bodaghi, M. Design, evaluation, and optimization of 3D printed truss scaffolds for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 120, 104594 (2021).

    Article 
    CAS 

    Google Scholar 

  • Radhakrishnan, S. et al. 3D printed antimicrobial polycaprolactone scabs for tissue engineering. Mater. Sci. Eng. C 118, 111525 (2021).

    Article 
    CAS 

    Google Scholar 

  • Belaid, H. et al. The development of biocompatible 3D printed grapheneoxide-based scaffolds. Mater. Sci. Eng. C 110, 110595 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, W. et al. 3D printing of PLA/nHA composite scaffolds with custom mechanical properties and biological functions to aid bone tissue engineering Compos. Part B 224, 109192 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mondal, S., Phuoc, T., Pham, V. H. & Hoang, G. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram. Int. 46, 3443–3455 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, B. et al. 3D printed bone tissue regeneration PLA/HA scaffolds with extensive performance optimizations Mater. Des. 201, 109490 (2021).

    Article 
    CAS 

    Google Scholar 

  • Du, J. et al. Comparative evaluation of chitosan and cellulose acetate as well as polyethersulfone microfiber scaffolds for neural differentiation Carbohydr. Polym. 99, 483–490 (2014).

    Article 
    CAS 

    Google Scholar 

  • Shi, Q. et al. The osteogenesis caused by a bacterial cellulose scaffold containing bone morphogenetic Protein-2. Biomaterials 33, 6644–6649 (2012).

    Article 
    CAS 

    Google Scholar 

  • Joseph, B., Sagarika, V. K., Sabu, C., Kalarikkal, N. & Thomas, S. Cellulose nanocomposites: Fabrication and biomedical applications. J. Bioresour. Bioprod. 5, 223–237 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lin, N. & Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 59, 302–325 (2014).

    Article 
    CAS 

    Google Scholar 

  • Murizan, N. I. S., Mustafa, N. S., Ngadiman, N. H. A., Mohd Yusof, N. & Idris, A. Review on the use of nanocrystalline cellulose in bone tissue engineering. Polymers (Basel). 12, 2818 (2020).

    Article 
    CAS 

    Google Scholar 

  • Shuai, C., Yuan, X., Yang, W., Peng, S. & Qian, G. Synthesis of a mace-like cellulose nanocrystal @ Ag nanosystem via in-situ growth for antibacterial activities of poly-L-lactide scaffold. Carbohydr. Polym. 262, 117937 (2021).

    Article 
    CAS 

    Google Scholar 

  • He, Y., Li, H., Fei, X. & Peng, L. Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydr. Polym. 252, 117156 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kumar, A. et al. Crosslinking functionality and microstructure of cellulose nanocrystals reinforced by poly(vinyl alginate/sodium aginate hybrid scaffolds. Int. J. Biol. Macromol. 95, 962–973 (2017).

    Article 
    CAS 

    Google Scholar 

  • Rashtchian, M., Hivechi, A., Bahrami, S. H., Milan, P. B. & Simorgh, S. Fabricating alginate/poly(caprolactone) nano fibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation. Carbohydr. Polym. 233, 115873 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kumar, A., Madhusudana, K. & Soo, S. Development of sodium alginate-xanthan gum based nanocomposite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polym. Test. 63, 214–225 (2017).

    Article 
    CAS 

    Google Scholar 

  • Kumar, A., Rao, K. M. & Han, S. S. Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohydr. Polym. 193, 228–238 (2018).

    Article 
    CAS 

    Google Scholar 

  • Sucinda, E. F. et al. International journal of biological macromolecules Development and Characterisation of Packaging Film from Napier cellulose Nanowhisker Reinforced Polylactic Acid (PLA) Bionanocomposites Int. J. Biol. Macromol. 187, 43–53 (2021).

    Article 
    CAS 

    Google Scholar 

  • Vorawongsagul, S., Pratumpong, P. & Pechyen, C. Preparation and foaming behavior of poly(lactic acid)/poly(butylene succinate)/cellulose fiber composite for hot cups packaging application. Food Packag. Shelf Life 27, 100608 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ghaffari-bohlouli, P., Jafari, H., Khatibi, A., Bakhtiari, M. & Tavana, B. Osteogenesis enhancement using poly (L-lactide-co-D, L-lactide)/poly(vinyl alcohol) nano fi brous scaffolds reinforced by phospho-calcified cellulose nanowhiskers. Int. J. Biol. Macromol. 182, 168–178 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cui, L. et al. Rheology of PLA/regenerated Cellulose nanocomposites: Network formation, modeling. Mater. Des. 206, 109774 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chen, J., Zhang, T., Hua, W., Li, P. & Wang, X. 3D Porous polylactic acid/regenerated cellulose composite scaffolds based electrospun microfibers for biomineralization Colloids Surf. A Physicochem. Eng. Asp. 585, 124048 (2019).

    Article 

    Google Scholar 

  • Rajeshkumar, G. et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites—A comprehensive review. J. Clean. Prod. 310, 127483 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mao, D., Li, Q., Bai, N., Dong, H. & Li, D. Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydr. Polym. 180, 104–111 (2018).

    Article 
    CAS 

    Google Scholar 

  • Yan, D. et al. Surface modified electrospun poly (lactic Acid ) fibrous scaffold with Ag nanoparticles and cellulose nano fibrils for ocular cell proliferation. Mater. Sci. Eng. C 111, 110767 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kumar, S. D., Venkadeshwaran, K. & Aravindan, M. K. Fused deposition modelling of PLA reinforced with cellulose nano-crystals. Mater. Today Proc. 33, 868–875 (2020).

    Article 

    Google Scholar 

  • Wang, Z. et al. Preparation of 3D printable micro/nanocellulose-polylactic acid (MNC/PLA) composite wire rods with high MNC constitution. Ind. Crop. Prod. 109, 889–896 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wang, Q., Ji, C., Sun, L., Sun, J. & Liu, J. Cellulose nanofibrils filled poly(lactic acid) biocomposite filament for FDM 3D printing. Molecules 25, 2319 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hafizi, W., Ishak, W., Rosli, N. A. & Ahmad, I. Amorphous cellulose’s influence on the mechanical, thermal and hydrolytic degradation of poly(lactic acids) biocomposites. Sci. Rep. 10, 11342 (2020).

    Article 

    Google Scholar 

  • Murphy, C. A. & Collins, M. N. Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing. Polym. Compos. 39, 1311–1320 (2018).

    Article 
    CAS 

    Google Scholar 

  • Nagarajan, S. et al. Design of boron/gelatin electrospun microfibers for bone tissue engineer. ACS Appl. Mater. Interfaces 9, 33695–33706 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cataldi, A., Rigotti, D., Nguyen, V. D. H. & Pegoretti, A. Polyvinyl alcohol reinforced with crystalline nanocellulose for 3D printing application. Mater. Today Commun. 15, 236–244 (2018).

    Article 
    CAS 

    Google Scholar 

  • Azarudeen, R. S. et al. 3D printable polycaprolactone-gelatin blends characterized for in vitro osteogenic potency Raja. React. Funct. Polym. 146, 104445 (2020).

    Article 
    CAS 

    Google Scholar 

  • Alam, F., Shukla, V. R., Varadarajan, K. M. & Kumar, S. Microarchitected polylactic acid (PLA) nanocomposite scaffolds for biomedical applications. J. Mech. Behav. Biomed. Mater. 103, 103576 (2020).

    Article 
    CAS 

    Google Scholar 

  • Stoof, D. & Pickering, K. Fused deposition modelling of natural fibre/polylactic acid composites. J. Compos. Sci. 1, 8 (2017).

    Article 

    Google Scholar 

  • Mazzanti, V., Malagutti, L. & Mollica, F. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers (Basel). 11, 1094 (2019).

    Article 

    Google Scholar 

  • Xu, L., Zhao, J., Qian, S., Zhu, X. & Takahashi, J. Green-plasticized poly(lactic acid)/nanofibrillated cellulose biocomposites with high strength, good toughness and excellent heat resistance. Compos. Sci. Technol. 203, 108613 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tarrahi, R. et al. A cellulose-based scaffold is developed for the sustained delivery of curcumin. Int. J. Biol. Macromol. 183, 132–144 (2021).

    Article 
    CAS 

    Google Scholar 

  • Torgbo, S. & Sukyai, P. Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering. Mater. Chem. Phys. 237, 121868 (2019).

    Article 
    CAS 

    Google Scholar 

  • Krieghoff, J. et al. An increase in the pore size for scaffolds can improve coating efficiency using sulfated hydrouronan. It also increases the mineralization potential of osteoblasts. Biomater. Res. 23, 23–26 (2019).

    Article 

    Google Scholar 

  • Malliappan, S. P., Yetisgin, A. A., Sahin, S. B., Demir, E. & Cetinel, S. Bone tissue engineering: Anionic polysaccharides as promising scaffolds Ponnurengam. Carbohydr. Polym. 283, 119142 (2022).

    Article 
    CAS 

    Google Scholar 

  • Gorgieva, S., Girandon, L. & Kokol, V. Mineralization potential of cellulose-nano fi brils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells. Mater. Sci. Eng. Eng. 73, 478–489 (2017).

    Article 
    CAS 

    Google Scholar 

  • K. Szustakiewicz Compos. Sci. Technol. 197, 108279 (2020).

    Article 
    CAS 

    Google Scholar 

  • Dridi, A., Zlaoui, K. & Somrani, S. Mechanism of apatite formation on a poorly crystallized calcium phosphate in a simulated body fluid (SBF) at 37 °C. J. Phys. Chem. Solids 156, 110122 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Q. et al. Biomineralization and mechanical properties of multifunctional nanodiamond PLLA composites for bone tissue Engineering Biomaterials 33, 5067–5075 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zou, L., Zhang, Y., Liu, X., Chen, J. & Zhang, Q. Biomimetic mineralization on natural and synthetic polymers to prepare hybrid scaffolds for bone tissue engineering. Colloids Surf. B Biointerfaces 178, 222–229 (2019).

    Article 
    CAS 

    Google Scholar 

  • Syahir, M. et al. Proceedings of entrapment collagen on a polylactic acid 3D scaffold as a possible artificial bone replacement Mater. Today Proc. 46, 1668–1673 (2021).

    Article 

    Google Scholar 

  • Zhang, R. & Ma, P. X. Porous poly (L-lactic acid)/apatite composites created by biomimetic process. J. Biomed. Mater. Resour. 45, 285–293 (1999).

    Article 
    CAS 

    Google Scholar 

  • Ngiam, M. et al. Fabrication and use of mineralized polymeric composites made from nanofibrous material for bone graft. Tissue Eng. 15, 535–546 (2009).

    Article 
    CAS 

    Google Scholar 

  • Fragal, E. H. et al. Hybrid materials to engineer bone tissue from biomimetic hydroxiapatite growth on cellulose nanowhiskers. Carbohydr. Polym. 152, 734–746 (2016).

    Article 
    CAS 

    Google Scholar 

  • Harris, S. A., Enger, R. J., Riggs, B. L. & Spelsberg, T. C. Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J. Bone Miner. Res. 10, 178–186 (1995).

    Article 
    CAS 

    Google Scholar 

  • Zheng, D., Zhang, Y., Guo, Y. & Yue, J. The isolation and characterisation of nanocellulose with an unusual shape from walnut (Isolation and Characterization).Juglans Regia L.) Shell agricultural refuse. Polymers (Basel). 11, 1130 (2019).

    Article 

    Google Scholar 

  • Lee, S. H. & Song, W. S. Modification of polylactic acid fabric by two lipolytic enzyme hydrolysis. Text. Res. J. 83, 229–237 (2013).

    Article 

    Google Scholar 

  • Lee, S. H., Kim, I. Y. & Song, W. S. Biodegradation of polylactic acid (PLA) fibers using different enzymes. Macromol. Res. 22, 657–663 (2014).

    Article 
    CAS 

    Google Scholar 

  • Kokubo, T. & Takadama, H. How useful is SBF in predicting in vivo bone bioactivity ?. Biomaterials 27, 2907–2915 (2006).

    Article 
    CAS 

    Google Scholar 

  • Previous post Waseda University develops novel 3D printing method for complex metal-plastic composite structures
    Next post 3D Printing News Briefs, December 10, 2022: Top Workplaces & Nitinol & More – 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing